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The steady axisymmetric flow generated in an unbounded incompressible viscous fluid, 
of density p and kinematic viscosity v, by torque-producing singularities with constant 
line density c along the semi-infinite line B = 0 of a spherical polar coordinate system 
(Y, 0, Q1) that was investigated by Paull & Pillow (1985 b), is reconsidered. The numerical 
solution constructed revealed the following features. (i) For values of c up to about 
46.9 there is only one solution where the axial component of the meridional flow is 
directed from B = 0 to 19 = x. This solution can be continued to all values of c. (ii) For 
c > 46.9 the system of equations allows bifurcation and two more solutions with a 
single separatrix are possible. (iii) For c = co one of the two branches of the separatrix 
asymptotes to # = i n  and the other to B = x .  The asymptotic solution for large c 
constructed by Paull & Pillow (1985b), where the meridional flow consists of two 
colliding flows, relates to the bifurcation solution where the separatrix asymptotes to 

as c-+ 00. 

1. Introduction 
In three interesting papers Pillow and Paull (Pillow & Paull 1985; Paull & Pillow 

1985~1, b) analysed and characterized in detail several causes for conical flows in an 
unbounded viscous incompressible fluid. Such flows are axisymmetric and, according 
to these authors, can be generated by four independent singularities along the 
symmetry axis (0 = 0,O = x) of a spherical polar coordinate system (r,  B,&. These are: 
(a) a semi-infinite line of sources (or sinks) with constant line density, stretching from 
the origin to infinity; (b) a point force at the origin directed along the symmetry axis 
of the system and generating a source of momentum; (c) two antisymmetric (about the 
origin) semi-infinite line forces (along the semi-infinite lines 8 = 0,B = x) with line 
density inversely proportional to the distance from the origin; (d) a semi-infinite line, 
say the line 0 = 0, of swirl-producing singularities pointing along the line with constant 
line density c. The flow fields generated by causes (a)-(c) are meridional and have no 
azimuthal component. Cause (d)  generates an azimuthal flow field which induces a 
meridional flow that in the nonlinear regime interacts with and modifies the azimuthal 
flow. The meridional velocity field has a logarithmic singularity along the half-line 
19 = 0 and can be associated with the flow generated by a (logarithmically infinite) point 
force at the origin 0 that discharges axial momentum in the direction B = x. 

In the third of these papers Paull & Pillow (1985b, hereafter referred to as PP) 
studied in detail the flow fields associated with cause (d) assuming that the strength L 
(in PP notation) of the ring-circulation-producing singularity at the origin is zero. For 
the definition of ring circulation see the three papers by Pillow and Paull (1985). For 
small values of c they constructed an analytic solution and for large c an asymptotic 
solution of the problem. The meridional flow for the analytic solution represents a one- 
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cell configuration and for the asymptotic solution a two-cell one. PP conjectured that 
at a value of c larger than 3 the &component of the velocity changes sign and the flow 
develops an internal viscous layer so that the asymptotic solution for large c is a 
continuation of the analytic solution. It appeared to us that the one-cell solution 
should exist for all c and the situation is more complicated than that described by PP. 
A numerical solution of the problem has confirmed our ideas and revealed that the 
asymptotic solution constructed by PP is one of two solutions relating to tangent 
bifurcation that start at c FZ 46.9 and exist for all higher values of c. The purpose of this 
paper is to present the appropriate solutions for various values of c. 

2. General equations of the problem 
The general equations of the problem have been derived by several authors. Here 

they are cast in the format used by PP in the three papers mentioned above and also 
by Serrin (1972) and their details will not be repeated. Below we briefly summarize the 
main features of the equations. 

Let p ,  p, v and u denote the pressure, density, kinematic viscosity and velocity of an 
incompressible viscous fluid. In a spherical polar coordinate system (:r, 0, $), the 
velocity is assumed to be axisymmetric and in the steady state is given by 

where p = cos0, c is a positive constant and a prime denotes differentiation with 
respect to p. The function g@) relates to a streamfunction @ given by 

$ = vrgcu). 
The pressure is given by 

p = v2ph(,u)/r2. 

If we substitute (1) and (3) in the momentum equation we find that its $-component 
yields 

If we take the curl of the momentum equation, so as to eliminate the pressure, after 
some manipulation we obtain 

( 5 )  

(6) 

(1 -p2)Q”-gQ2/ = 0. (4) 

gg”’ + 3g’g” - (1 - p2) g’” + 4pg“‘ = - 2c2QQ’/( 1 -pu”). 

g2 - 2( 1 -,u.”) g’ - 4pg = 4c2G(LL), 

When ( 5 )  is integrated three times it yields 

where 

A ,  B and C being constants of integration. 
The boundary conditions are as follows : 
(i) Q( 1) = 1 ,  Q( - 1) = 0, due to the swirl singularities on p = 1 and the absence of 

(ii) Since there are no sources or sinks on the symmetry axis, $ = 0 there, i.e. 
them on p = - 1. 

g(1) = 0, g( - 1) = 0. These conditions yield 

A + C = O ,  B = 0 .  
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(iii) Since there are no singularities on the half-line p = - 1, the velocity is finite 
there; in particular g‘( - 1) = finite. The conditions g( - 1) = O,g’( - 1) = finite, mean 
that the left-hand side of (6) has a double zero at p = - 1. Therefore G @ )  has a double 
zero at p = - 1 and since Q( - 1) = B = 0, equation (7) yields A = C = 0. 

(iv) The torque-producing singularities generate ring circulation and the origin 0 is 
a source of axial momentum directed along p = - 1 and of ring circulation. Here, as 
in PP, we assume that the strength L of the ring-circulation-producing singularity at 
0 is zero. This condition determines the details of the singularity at 0 and is signified 
by the equation 

Equation (8) is equation (4.14) on p. 386 of PP and details of its derivation can be 
found in that paper. 

The function h@) occurring in the pressure term (see (3)) is obtained from the radial 
component of the momentum equation and it turns out to be 

[ +(gg’-(1 -p.”)g”)’ . 1 h = - -  1 g2+c2Q2 
2 1-pz 

PP showed that this configuration is associated with a fictitious force along p = 1 
pointing away from the origin with line density 

- rcc2pv2/r. (9) 

(In their notation the density of the fictitious force per unit length along p = 1 is 
pKA(1)/2r; see their equation (7.1) on p. 374.) The same result is also obtained from 
the work of Goldshtik & Shtern (1990). They showed (on p. 486) that the force per 
unit length along p = 1 pointing in the direction of r increasing is 

-4rcv2pr-’ lim [(l -p)g”]. (10) 
P+l 

If we differentiate (6) and scrutinize the resulting expression we can see that (10) yields 
the expression given by (9). 

The axial flow of the configuration can be associated with that of a point force F, at 
0 pointing along p = - 1. The point force can be evaluated as explained by Batchelor 
(1967, p. 209). After some manipulation we find that 

From (8) and (1 1) it can easily be shown that F, is logarithmically infinite. This is due 
to the fact that as 

v2p2 Q2 1 
4r2( 1 - p) 1 -p2 2(1 - p ) .  

andin(l1) --- p+L P-- 

3. Solution of the problem 
We set 

g = -2(l-p2)u’/u 
and transform (6) into 

U” = c2G@) ~ / ( l  -p2)’. 
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We substitute (12) in (4) and integrate twice subject to the boundary conditions 
O(1) = 1, a( - 1) = 0, to obtain 

G? = u-s(,)dt/ u-,(t)dt. (14) 
J -1 / J - 1  

The governing equations are (7) with A = B = C = 0, (13) and (14). These must be 
solved subject to (8) and in general must be solved iteratively. In view of (12), without 
loss of generality we can set u( - 1) = 1. We specify a value of u’( - l), say u’( - 1) = ct 

and vary ct until the constructed solution satisfies (8). 

Solution for  small c 

For small c a series solution in powers of c can be constructed by setting 

g = &,@) + c4g,@) + . . . 2 

u = 1 + c2uu,c.) + c4u2c.) + . . . , 
52 = Q,@) + c252,@) + . . . . 

From (16) and (14) we obtain Q,@) = i(1 +p)  and then, 

u1=-- ,, I [  1 ln[#-p)]] 
8 l-$+ ( 1 + ~ ) ~  ’ 

Integrating (1 8) and selecting the constant of integration 
obtain 

(17) 
from (7) and (13), 

(18) 

so as to satisfy (8) to c2, we 

(19) 

g, = i(1 -,u)ln[f(l -p)]+&(l -I.’). (20) 
This solution was given by PP who also constructed the functions g, and 52,. These 
functions satisfy the conditions g, < 0, 52, 2 0 and at some value of p, say ,G, g, changes 
sign so that g,@) > 0 for ,u > ,ii. PP suggested that the two-term expansion of (15) 
indicates that at some value of c, the function g associated with the one-cell 
configuration develops a zero in the range - 1 < ,u < 1 and estimate (p. 377) that this 
occurs at a value a little larger than 3 and constructed an asymptotic solution for large 
c. The following argument indicates that the g-function associated with the one-cell 
solution does not change sign and the asymptotic solution may originate as a 
bifurcation at some specific value of c. 

In view of (12), g will change sign at the value of p where u’ = 0. The function Gb), 
given by (7), is positive except at ,u = f 1 where it is zero. Since u > 0, it follows from 
(13) that u” > 0 and therefore u’ increases monotonically as ,u increases from - 1 to 
+ 1. Therefore for u’ to be zero (and g to change sign) it is necessary that u’( - 1) < 0. 
It can be easily shown from (19) that ui( - 1) = 1/32. PP showed that gi( - 1) z 
-0.014, (their expression (5.21)), which in view of (12) and the condition u(1) = 1, 
yields uh( - 1) E 0.0035. 

Therefore for small c 
c2 35c4 
32 10000 

u’( - 1) = -+- +..., 

that is the term associated with u, increases the value of u’( - 1) and indicates that u’ 
increases as c increases and the function g@)  does not change sign. The numerical 
solution presented below confirms this view. 
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The numerical solution 

The numerical solution is constructed as follows. For a given c we guess a@) and use 
(7) to construct G@); then we solve (13) subject to u( - 1) = 1, u’( - 1) = a, where a is 
a fixed quantity, and construct u@) which we use in (14) for an improved a&). The 
new a@) is used in (7) for an improved G@) and so on until convergence. We assume 
that convergence has been achieved when at all points 11 - un+Jun1 < lop9, where un@) 
are the U-values obtained at the nth iteration. The solution constructed is then tested 
in (8). We varied the parameter a until (8) was satisfied. The integrals, occurring in (7), 
(8) and (14), were evaluated using the trapezoidal rule, and equation (13) was solved 
by Runge-Kutta methods. In general we used a step length of 0.0005. 

The function g’ occurring in (8) has a logarithmic singularity at p = 1 which can be 
integrated analytically. To evaluate (8) we express the quantities g and g’ in terms of 
u, u’ and u” and for accurate results we found it necessary to split the range of 
integration into two subranges, - 1 < p < p1 and ,ul < ,u < 1, where pl is close to 1. 
For the second subrange we set 

1 -c” = x, 1 -pl = x,, u@) = u(x). 

In the second subrange the integral was evaluated partly analytically and partly 
numerically. The contribution of the second subrange to (8) was expressed as 

~ , ( - 3 2 + 5 2 ~ , )  q+4x;(3-x1) U, 

-8x2(2-x)’(1 -x) 
Q”(l -frx)Z 

x(2 - x) 

12-4~+(56- 128~+32~’ ) -  

+xz(:r[ - 1 0 8 + 3 6 ~ + ( 3 2 - 6 4 ~ + 4 0 ~ ~ - 8 ~ ~ )  (21) 

where U, = U ’ & ~ ) / U & , )  and the terms containing Ul relate to the part of the integral 
done analytically. 

It can easily be seen from (7) that near ,u = 1 

G z i(1 -,u)[l +a(l -p)ln(l -p)], a = Q’(1). 

Hence, for small x, (13) was approximated by 

16xu” = cz( 1 + ax In x) u. 

The two solutions of (22) (for small x) are 

u1 = x+c2 

To evaluate the integral in (21) we assumed that u” is given by (22) and 

u’ v;+cu; 
u u,+ CU2’ 
- -- - 

where 
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FIGURE 1. SZ&) for some values of c, as shown on the curves. 

that is for u we chose a linear combination of u1 and u2 so that at x,, u = u, u’(x) = 
-u’@). In this procedure we set X, = 0.001. 

As mentioned earlier the two-term expansion of g by PP indicates that as c increases 
so do the functions u, u’ and un. This indication was confirmed by our detailed 
computational results and it transpires that at a given ,u the function Oh) increases as 
c increases. Indeed our computations showed that for a specified value of p ,  say p2, at 
sufficiently large c, the value of 0 is practically 1 for p > ,uz and, as expected, ,u2 
decreases when c increases. Values of Q for some c are shown in figure 1. 

For the case of large c where 52 = 1 for ,LL > ,u2, an accurate evaluation of the integral 
occurring in (21) can be achieved. It can be shown from (7) that for this case 

G = 31 -P-W -A2], P > P2, (25) 

where 

If we now set 

1 -,u = x = hy, 1 -,u, == X, = hyl, h = 16/c2, u@) = U ( X )  = ~ ( y ) ,  

equation (13) for ,u > ,uz is transformed into 

J’( 1 - iyh)’ W” = (1 - byh) W .  (27) 

The two solutions of (27) are denoted by w1 and w2.  For small y the first few terms of 
w, and w2 were constructed analytically ; thence w1 and wz were integrated numerically 
(Runge-Kutta methods) to y1 = x,/h. The function w is a linear combination of w1 and 
w2 so that at ,ul, w = u and w’ = - A d .  The expression in the integral of (21) was 
converted into one involving y and w with w”/w given by (27). In the computations here 
we set x1 = 0.005. 

For large values of c the gradients of 52 and g are very large around ,u = - 1 .  For 
this reason for ,u c ,uo, where po is a constant close to - 1, we used the transformation 
1 +,u = €2 and adjusted (7), (13) and (14), accordingly. For the data used we found, 
after some numerical experiments, that reasonably accurate results can be obtained 
by setting po = -0.98, E = 0.05 and selecting a step length in the z-variable of 0.0005. 

In figure 2 we have plotted the function g/Maximum lgJ for some values of c and, as 
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FIGURE 2. g&)/Maximum lg&)l = Y for the values of c shown on the curves. For c = 0.1,3,8,50 the 
maximum values of lg&)I are 0.00128, 1.48, 5.72, 35.39 and occur at ,U = 0.40, 0.13, -0.13, -0.028 
respectively. 

suggested earlier, this figure shows that g does not change sign. The case c = 0.1 
represents, in effect, the one-term approximation g x czgl. 

It can easily be shown, from (26), that the minimum value of b is 0.5 and occurs at 
pz = - 1. We found that as c increases up to large values, b+0.5. For example for 
c = 8 and 50 the corresponding values of b are 0.5199 and 0.5003. Therefore for large 
c, (25) yields 

and, since then g is large, it follows from (6) that 

G z f (  1 -,LA’) 

g z - ~(0.5( 1 -p2))li2, (28) 

except near p = & 1, where there are boundary layers. The validity of the 
approximation (28) is confirmed by the function g&) shown in figure 2 for c = 50. For 
c = 50 the maximum value of lgl obtained from the numerical solution is 35.39 at 
p = -0.028, whereas that obtained from (28) is 35.36 at /A = 0. 

Near p = 1, the asymptotic solution of (27), say w1 = 1 + y  lny. It then follows from 
(12) and the relationship between y and p that the asymptotic value of g is given by 

g x 4ylny. (29) 
More formally, near p = 1 the asymptotic solution of (27) for h+O is y1/2K1(2y1/2), 
where K, is the usual Bessel function. It then follows from (12) and the relationship 
between Kl and KO that the asymptotic solution of g is given by 

This expression for g was given by PP in their equation (6.10) and for small y reduces 
to equation (29). 

The quantity g’( - 1) is negative and for large c it is large. We found, for example, that 
for c = 8 and 20, g’(- 1) = -44 and -435. The asymptotic forms of g and G? near 
p = - 1 for large c were constructed by Foster & Smith (1989) and by Goldshtik & 
Shtern (1990) and, in our notation, are 

g = 47/(4-7), Q = -0.25g, 7 = g’( - 1)(1 +/A). 

In figure 3 we have plotted the streamlines = constant in a meridian plane for 



268 

b -  
-2 - - 

1 1 

C. Sozou, L. C. Wilkinson and V. N .  Shtern 

t - 
. 350 300 - (4, - 
250 - - 
200 - -- 
I50 - - 
100 - 

I - 
50 A 

.20 
- 
a -  
- 1  I 

1 

0 1 

0 1 



Conical swirling flows in an inJinite fluid 269 

some values of c. The case c = 0.1, in effect, relates to the Stokes flow regime where 
g x 28,. The streamline pattern for the case c = 3 is similar to that obtained by PP from 
the approximation g z c’g, + c4g,. We find that for c = 3 near p = - 1 the intensity of 
the flow is about 15 % higher than that obtained from the two-term approximation of 
g. As c increases so does the overall intensity of the g-field, especially around the region 
p = - 1, and at large c near the axis the g-field resembles a jet which exhibits 
convergence towards the line p = - 1. (For c = 50,g(0.999) x 0.5g(-0.999).) 

The radial vorticity of the system, r“. V x u, is - v c 0 ’ ( j ~ ) / r ~ ,  that is the origin is a sink 
of vorticity with total vorticity input 2xvc0(1) = 2xvc. This vorticity is discharged in 
the form of a semi-infinite line vortex along ,LL = 1 and induces an azimuthal velocity 
field such that the convective terms u - Vu in the momentum equation are rotational, 
that is the term 00’ in ( 5 )  is non-zero. The term 00’ in (5) induces a suitable g-field 
so that the total meridional flow balances it. 

When c 6 1, the radial vorticity is independent of p and the meridional flow does not 
affect the vorticity distribution that generates it. As c increases (and the nonlinearities 
of the system become significant) interaction occurs between the meridional flow and 
the vorticity that generates it and, owing to convection, the radial vorticity density 
0/&) is greatest near p = - 1 and least near p = 1. At high values of c the radial 
vorticity of the system is concentrated in a conical region about the line p = - 1 which 
becomes thinner as c increases. We found, for example, that for c = 20 there is no 
radial vorticity outside a cone (about p = - 1) with semi-vertical angle 60” and for 
c = 50 there is no radial vorticity outside a cone with semi-vertical angle 25”. Since, 
by definition, 0( - 1) = 0 the configuration described here will exist for all finite c. 
This conclusion is also reached from the work of Goldshtik & Shtern (1990, p. 489). 
Their reasoning is as follows. If we integrate (13) from p = 1 to p = - 1 and there is a 
critical stage associated with the configuration it will manifest itself as u( - 1) = 0 and 
g( - 1) = -4 (see (12)). At that stage the outer solution of (13) will satisfy the con- 
ditions u(1) = 1, u’(1) = 0 and u’( - 1) = 0. Since G > 0, if we satisfy the conditions 
u(1) = 1, u’(1) = 0 we cannot satisfy the condition u( - 1) = 0 which implies that 
there is no critical configuration. 

4. The bifurcation solutions 
The asymptotic solution constructed by PP at large c represents two colliding flows 

along p = ,LL* = - 6 In c/c and relates to the case 0 = 0, g > 0 for p < p* and 0 = 1, 
g < 0 for p > p*. That solution can only result from bifurcation. Indeed the integral 
immediately before their equation (6.12) on p. 372 yields 

Therefore for a sufficiently large c there are two negative values of ,u* and as c -+ co one 
of these tends to zero (this one relates to the solution given by PP) and one tends to 
- 1. It can easily be shown that the two solutions of (31) coalesce at p* = - l / d  
where the corresponding value of c x 45.9. 

If we set 0 = 0 for p < p* and 0 = 1 for ,u > p*, (1 3) becomes 

,, C’ 1-b(1-p) 
P > P*. u =- 

4 (1 -p)(l +p)’” 
where b = f+f[ l / ( l  -p*)]. 
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FIGURE 4. (a) Values of ,u* in terms of the parameter c :  ---, asymptotic values given by (3 1) ;  . . ., 
values obtained from the solution of (32); -, values obtained from the exact solution. (b) Colliding 
flows in a meridian plane (from the exact solution) relating to c = 50 and ,u* = -0.807. (c) Colliding 
flows in a meridian plane (from the exact solution) relating to c = 50 and ,u* = -0.582. The numbers 
on the curves in (b)  and (c) are values of +/vL, where L is a characteristic length. The torque- 
producing singularities for (b) and (c) are on the right half-axis of symmetry. 

Equations (32) were solved as follows. We specified c, guessed a value for ,u* and 
constructed a simple analytical solution of (32a) subject to u( - 1) = 1, u’(p*) = 0. 
Equation (32b) was then integrated numerically (from ,u = ,u* to ,u = 1) by the methods 
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described in $3. The parameter ,u* was varied until the resulting solution satisfied (8). 
The minimum value of c, obtained by this method, is 39 and the corresponding value 
of ,u* w -0.724. The function QG), constructed from (14) and the solution of (32), is 
small for ,u < ,u* and as ,u increases beyond ,u* it rapidly reaches the value of 1. 

To construct a more accurate solution of the problem we must solve (7), (13) and 
(14). Since for large c it is difficult to solve equations such as (32a) by forward 
integration subject to u( - 1) = 0, u’(,u*) = 0, we proceeded as follows. For the region 
,u < p* we started at ,u = ,u* and integrated (6) to ,u = - 1 subject to g(pJ = 0. In 
practice we stopped close to ,u = - 1, set g( - 1) = 0 and extrapolated g’( - 1). The 
expression u - ~  for ,u < ,u* (that is used in (14)) was obtained from (12), that is 

In the region ,u > ,u* we made use of (13) and proceeded as described in $3. In this way 
for a given ,u* (and c) we constructed a convergent solution. We then varied ,u* until 
the constructed solution satisfied the boundary condition (8). The minimum value of 
c associated with this procedure is 46.9 and the corresponding value of ,u* = -0.704. 
Figure 4(a) illustrates the values of ,u* in terms of c obtained from (31), the solution of 
(32) and the exact numerical solution of the problem. Figures 4(b)  and 4(c) show the 
meridian streamlines for the two bifurcation solutions relating to c = 50. Both 
solutions represent colliding flows. 

Since the point force at the origin points in the same direction (6 = n) as the fictitious 
force along the half-line 0 = 0, the two bifurcation two-cell solutions that branch off 
at the origin and represent colliding flows must be due to the centrifugal effects of the 
flow and the discontinuity in the gradient of the torque-producing singularities at the 
foot of the semi-infinite line vortex. 
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